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Light-cone variables and the high energy limit of elastic 
scatt ering 
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Abstract. A simple derivation is given of the eikonal approximation for high energy elastic 
scattering due to the multiple exchange of single scalar particles. This is generalized to the 
exchange of particles of arbitrary spin or multiple reggeons. The implications for very high 
energy are discussed. 

1. Introduction 

A theory of ultrahigh energy elastic scattering has been given by Cheng and Wu (1970) 
in a long series of papers in which summations are made of the leading terms in the 
high energy limit of various families of graphs in quantum electrodynamics. Other 
authors (Chang and Fishbane 1970, Chang and Yan 1970, Hasslacher et al1970, Cheng 
and Wu 1971) have examined 4 1 ~  theories in addition to QED and have summed exchanges 
of basic primitive diagrams or ‘towers’. The first calculation along these lines was 
performed in QED by Cheng and Wu (1969) and was concerned with electron-electron 
scattering via the exchange of any number of single photons, summed over all possible 
orderings of the end points. The result in all cases is the standard eikonal expression for 
scattering in an effective potential which is just the Fourier transform of a basic primitive 
diagram. For photon exchange (Cheng and Wu 1969) this is just the Coulomb potential. 
The authors remark that this simple result should be obtainable by a more direct 
argument. This has been partially supplied by Bjorken et al (1971) who discuss high 
energy scattering in an external field using light-cone quantization. In the following 
section we remark that for a free field the light-cone quantization of the annihilation and 
creation operators and the expansion of the field in terms of them differs only in the 
choice of variables from conventional quantization on a space-like surface. We then 
reproduce the Bjorken argument for the external field problem using the light-cone 
variables for the fields, but a conventional Feynman-Dyson interaction representation, 
based on time- (not z-) ordered products. This modification leads to a simple derivation 
of the eikonal formula for the elastic scattering of two hadrons interacting through the 
multiple exchange of spin zero mesons. This is presented in $4, where it is also 
generalized to the exchange of particles of higher spin. 

In a more complicated theory one may expect that the basic structure exchanged is 
something like a ‘tower’. Since the exchanges of these ‘towers’ are in most cases 
exchanges of Regge poles (Lee and Sawyer 1962, Eden et a1 1966), it is a simple matter 
to extend the eikonalization procedure to this case and so find the leading energy 
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dependence. As an example (see Chang and Yan 1970, Hasslacher et al 1970), we do 
this for a purely absorptive Regge pole with a linear trajectory. 

2. Free-field quantization 

With covariant normalization the conventional commutation relations for the annihila- 
tion and creation operators of a free scalar field are 

S ( P 2  - m2)0(Po) [4P), at(p0l = GW3h4(P -P’). (2.1) 

The corresponding expansion of the field operator is 

4(x) = ( 2 7 ~ - ~  d4p 6(p2-m2)0(po)(a(p) e-iPX+bt(p) eipx), (2.2) 

where b(p) and b’(p) are the antiparticle operators, satisfying the same commutation 
relations as a and at. Expressions (2.1) and (2.2) can be evaluated on any space-like or 
light-like surface. For the latter we introduce the variables 

21’Z2 = xo - x3 (2.3) 21’22 = xo+x3, 

and 

2 9  = po+p3, 

(p)’ - m2 = (pol’ - e2(p) = 2yh -p2 - m2: 

21”h = po-p3. 

Then 

where 

E(P) = ((p3)Z +p2 + m y  

and 

P = (P’>P2). (2.7) 

{ a(p, p3), at(p‘, P”)> = (27~)~2~6’(P -p’ )  6(p3 - p 3 ’ ) ,  (2.8) 

{a(p5 V I ,  at(p’, U ’ ) }  = (271)32Y6(V - U ’ )  S2(P-P‘)3 (2.9) 

The commutator (2.1) may then be written in either of the alternative forms 

y > 0 .  

The former expression is the usual one for quantization on the surface t = 0, the latter 
for the light cone z = 0 (see Bjorken et a1 1971). 

Similarly the expansion of the field takes the alternative forms 

+(x) = (271)- 3 J e [ a ( p ,  p 3 )  expi - i(x0E- p3x3 - p  . x)} 
2E 

+bt(p,p3)exp{i(xo~-p3x3-p .x)} ]  

or (Bjorken et a1 1971) 

4(x) = ( 2 7 ~ ) - ~  1 d2p jOm [a(p,  y) exp{ - i(Hz + yz - p  . x)) 

+ bt(p, y) exp{ i(Hz + yz - p  . x)}] 

(2.10) 

(2.11) 
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where 

(2.12) 

In (2.9) and (2.11) left-moving particles (negative p 3 )  are contained in the limited range 

(2.13) 

These expressions are thus most appropriate for hiyh energy right-moving particles. 
The corresponding expressions appropriate to left-moving particles can be obtained 
integrating (2.1) and (2.2) over q rather than h, which leads to 

0 < q < 2-'"m. 

{a (p ,  h), a+(p', K)} = (2432h 6(h - -p')  (2.14) 

and 

4(x) = (271)- / d2p /om $ [a(p, h) exp( - i(hz + qz - p  . x)} 

+ b+(p, h)  exp{i(hz + qz - p  . x)}], (2.15) 

where 

(2.16) 

3. Scattering in an external field 

Consider the scattering of a single scalar particle in a time-dependent classical external 
field 4'"(x). The interaction lagrangian density of the system is 

-Ux) = g4+(x )4 (x )4 ' " (x ) .  (3.1) 

If the field does not contain sufficiently high frequencies to create pairs, an elegant 
solution to the problem in the high energy limit has been given by Bjorken et a /  (1971). 
We present this in a slightly modified form which allows for a generalization below. 
We work in the conventional interaction representation based on space-like surfaces 
and the variable xo, but express the fields in the right-moving form. The initial state 
can be taken to be that of a fast right-moving particle along the x3 axis in the rest frame 
of the external field (ie that in which the significant momentum components of its 
Fourier transform are smallest in magnitude). The required S matrix element is 

where T denotes the conventional time ordered product. Transform to the rest frame 
of the initial particle? 

Ii) = exp( - imK3)li0), (3.3) 

t K ,  is the generator of Lorentz transformations in the x3 direction. The state li) has components (PO, 0, p') 
or (qi, 0, hi) and sinh o = p'/m, e+O = J2q,/m. 
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so 

sfi = ( f, 1 exp(iwK 3 ) ~  exp 

Now 

exp(ioK3) L(x)  d4x exp( - iwK,) s 
= g J- 4 + ( ~ z ,  z / E ,  x ) ~ ( E T ,  z / E ,  x ) ~ ~ ~ ( T ,  z, x) dz dz d2x 

= cg s q5t(~z, z, x ) ~ ( E z ,  z ,  X ) ~ ~ ~ ( T ,  EZ, x) dz dz d2x (3.5) 

where 

E = e-O. (3.6) 

In the high energy limit, o + E, the operators are evaluated at z = 0 and the external 
field at z = 0 (ie along the approximate path of the particle). Since 

(3.7) 2 x2 = 222-x , 

the operators are all mutually space-like, hence commute with one another, and the 
T product can be ignored. Transforming back to the original frame, we obtain 

(3.8) 

P(X) = s 4t(o, z ,  xM0, z, x) dz . 

Using (2.11) and (2.9) this can be evaluated to give the relativistic eikonal form 

Sfi = (271)2yi6(y,-g,) expi?) exp(ih . x) d2x 

where 

h = pi-pf. 

(3.9) 

(3.10) 

(3.1 1) 

(3.12) 

This is the result obtained by Cheng and Wu (1969) and by Bjorken et al (1971). 

and in the S matrix element. The interaction Lagrangian 
I t  is worth examining in a little more detail what the limit cu --$ x implies in (3.5) 

9 = I d4xL(x), 
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which appears in the evaluation of the S matrix elements when expanded into annihila- 
tion and creation operators contains terms of the form : 

dp3’ dp3 
d2p’ d2p d2q dk; ~ 

2po 2po 

x [S2(p‘ -p  - 4)6(p3’  - p 3  - k )  exp{i(pO’ - p o  - v)xo}at(p’)a(p)$,,(q, k ,  v) 

+S2(p’+p-q)6(p3’+p3 -k) exp(i(pO’+po -v)xO}at(p’)bt(p) 

x $A> k ,  4.t . . .I (3.13) 
where 

1 
= ~I d2q dk dv$,,(q, k, v)  exp{ -i(xov-x3k-q. x)). (3.14) 

(27d3 

We make the assumption that the external field contains frequencies and wave- 
numbers small compared to the energy and longitudinal momentum of the initial and 
final ‘a’ particle in the rest frame of the external field. We can then separate the p 3 ,  p3‘ 
range of integration into large positive (1 +) and the rest ( r t s m a l l  and/or negative. On 
account of the 6 functions in (3.13) and our assumption about the significant range of k, 
if p3 is the 1 + range p3’ must also be in this range (scattering terms) or be large and 
negative (pair terms). The latter terms are damped out by the strongly oscillating 
exponential factor. Accordingly L can be split into two commuting parts and we can 
write 

Sfi = ( f i  Texp(  - i s L ( x ) d 4 x ) ( l + )  Texp(  - i j L ( x ) d 4 x ) ( r l l i ) ,  

where Texp(-iJL(x)d4x)(,+) will contain only ata or btb (scattering) terms with p 3  
large and positive, whereas T exp( -iJ L(x)  d4x)(,) will also contain atbt  and ab (pair 
creating and annihilating) terms. Since the states li) and If) are states with p:  and p: 
large and positive we can write 

As we take p ;  ---f cc the energies in the intermediate states will approach each 
other, that is, p o ‘ - p o  -+ 0 and so the time dependence in the operator part of 
T exp( - i J L(x)  d4x)(, + )  will disappear. The T operation can then be ignored. Thus 
we again arrive at  (3.11) apart from the factor 

(OlSlO) 3 (OiTexp( -i  s L(x)d4x)IO). (3.16) 

For external fields which can create pairs this is not a simple phase, but an energy- 
independent factor multiplying all scattering and creation amplitudes to make allowance 
for the possibility of real pair creation by the external field from the vacuum (see 
Matthews and Salam 1953). This factor is essential for the unitarity of the S matrix 
and is dependent only on the properties of the external field. 

4. Scattering of two distinguishable particles 

Let us consider the scattering (at high energies) of two scalar particles (a and b) due to the 
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exchange of another scalar particle. We assume the interaction lagrangian density is now 

(4.1) 
where $o(x) is a neutral scalar field of mass p .  The particles a and b are assumed to have 
the same mass m but are not antiparticles of each other. If we consider only those 
diagrams which arise due to the exchange of any number of $o type particles (Levy 
and Sucher 1969), the S matrix element for a-b scattering can be written 

L(x) = g04b(x)4a(x)40(x) + gb4L(x)4b(x )40(x ) ,  

Le&, x‘) d4x d4x‘ ( 4 4  

where 

gagb. 
Leff (X’  x’) = pIa(x)AF(x- x‘)jb(x’) 2 

where 

j,(x) = 4:(~)4,(x), i = a , b  

and AF(x - x’) is the Feynman propagator for mass p ,  

1 exp( - ikx) d4k 
( 2 7 ~ ) ~  s k2  - p 2  + i c  ’ 

AF(x)  = ~ 

(4.3) 

(4.4) 

(4.5) 

We shall work in the CM system where the unprimed variables label the a particle 
(assumed right moving) and the primed variables labels the b particle (left moving). 
We then have (see footnote in § 3) 

If we introduce the boosts K?) and 
respectively, we can write 

associated with the bare a and b particles 

l p , ,  p : )  = exp( - i oKt ) )  exp(ioK\b))lio), (4.8) 

where iio) is a state of an a and b particle both at rest. We do the same for the final 
state. We can now proceed as in the previous section, with the only difference that the T I  

and z‘ dependence of the b field will be interchanged. Thus 

exp( - ioKSb)) exp(iwK‘,”)) d4x’L(x, x’) exp( - ioIC(,”)) exp(ioK‘,b)) J d X  
d4x d4x’ja(6?, z ,  x)AF ( T  - ET’, EZ - z’, x - x’ljb(z’. EZ’, x’). (4.9) s - 

-€2 
In the high energy limit ( e  -+ 0) the z argument of the a operators and the z’ argument 
of the b operators both tend to zero. Because of (3.7), in this limit all a operators are 
mutually space-like, hence commute and similarly all b operators are mutually space- 
like and commute. Of course all a operators commute with all b operators, so the 
7’ operator in (4.2) can be ignored. Transforming back to the original frame we obtain 

a@,, y,)b(p;, hi) exp ( - i  r d 2 x  d2x’p(x, x’)~(x-x‘)at(p,, yl,)bt(pi, hi) 
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where 

p ( X ,  X’) = s dz d?ja(O, Z, x)jb(T‘, 0, X’) 

and 

(4.1 1) 

0 pix - ~ ’ 1 ) .  (4.12) dT dZ’AF(7, - z’, X-x’) = ---K ( gag, 
X(X-X‘) = - 

2 s 471 

If we now substitute the fields into (4.11) and employ the commutation relations- 
using the right-moving form for a particles, (2.9) and (2.11), and the left-moving form 
for the b particles, (2.14) and (2.15)-we find 

Sfi  = ( 2 n ) 4 2 s G ( q i - q i ) B ( h ~ - h ~ ) B ’ ( p i + p ~ - p r - p ~ ) ~  exp( -i--) x ( 4  exp(iA. x)d2x (4.13) 
2s 

where 

s = ( p  + p’)2 N 2pp’ = 2qih;. (4.14) 

This can be compared with the analogous result of Cheng and Wu (1969) for the case 
ofelectrodynamics. Note that the eikonalphase has a factor ofs- ’. This is a consequence 
of the exchange particle having spin zero. 

We can easily extend this result to the case ofparticles of higher spin being exchanged. 
We modify the interaction Lagrangian to be 

(4.15) L(X)  = ga4~(x)~4a(s)Ap(x) f gb$b(X)q4b(X)Ap(X) 
where 

(4.16) 

and A p ( x )  is a neutral vector field of mass p .  Again the S matrix for a-b scattering which 
arises from the exchange of any number of vector mesons can be written as (4.2) where 
now 

(4.17) 

(4.18) 

(4.19) 

In the high energy limit only the g 
scalar exchange except that the a, in the currents will bring down extra factors of 

term will contribute. Everything proceeds as with 
c* pv 

4(qih; + h,qj -Lfl) N 4qih; = 2s. (4.20) 

In which case the S matrix will be 

Sfi = ( 2 ~ ) ~ 2 s 6 ( y ~  -qf)6(h; - h;)6’(pi +pi -pf .-pi) (4.21) 

where ~ ( x )  is still given by (4.12). Note that the dimensions of the coupling constants 

exp( - iX(x)) exp(iA . x) d2x, 
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gag, are different in the two cases. For the scalar case they have dimension of energy 
whereas they are dimensionless for the vector coupling. 

We see how one can easily modify the result if the particle exchanged has spin j .  
Thus, the scattering of two distinguishable particles (a, b) via the multiple exchange of a 
particle of spin j in the high energy limit is given by 

Sfi = ( 2 ~ ) ~ 2 s 6 ( ~ ~  - qf)6(h{ - h ; ) S 2 ( p ,  + p i  - pf - p i )  exp( - id -  ‘~ (x) )  exp(iA . x) d2x, 

(4.22) 
J 

with ~ ( x )  given by (4.12). 
In all these cases the invariant T matrix is given by 

Tfi = 2is {exp( - is’- ‘x(x))- I} exp(iA . x) d2x. s (4.23) 

5. Exchange of Regge poles 

From (4.22) we see that the S matrix which arises from the multiple exchange of particles 
of spin j has (at high energies) a simple dependence on spin. If instead of exchanging 
a particle we assumed exchange of a more complicated system of spin j we need only 
replace the A,(x - x’) by a more complicated function of (x - x’), say V ( x  - x’). Thus the 
final result is just what one would obtain for a and b particles interacting via an energy- 
dependent ‘potential’ 

S J  V(x - x’), (5.1) 
and the eikonal phase is given (see (4.22)) by 

The answer in this simple approximation is thus identical with that obtained from 
the exponentiation procedure defined by Cheng and Wu (1971). For this to be applied 
one need only know the Born approximation for the scattering, and by a simple Fourier 
transform one obtains the effective potential which enters into the eikonal phase. 

As an example let us calculate the T matrix for the multiple exchange of an absorp- 
tive (ie purely imaginary) Regge pole with arbitrary ordering of the end points (for a 
more elaborate discussion see Cardy 1971). We assume the ‘Born approximation’ to be 

(5.3) T - - ipSa(r), B -  

where for simplicity we take /.3 independent of t .  Let us also assume a linear trajectory 

a(t) = Eo + R’t ,  (5.4) 
with 

a‘ > 0. 

The effective propagator V ( x )  which would appear in (4.3) is now 
- ipsao- 1 

V(x) = sexp(-ip.x)exp{(a’lns)p2J d4p, 
(2.)4 

(5.5) 
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where 
2 p 2  = t = 2qh-p . 

The eikonal phase as defined in (4.12) is 

(5.7) 

Note that the ‘coupling constant’ B and, in contrast to (5.2), the s dependence arising 
from the spin of the exchanged system is now included in V .  Substituting (5.6), we obtain 

- ipszo - 1 

2(2n)2 
1 exp(ip . x) exp( - (a’  In s)p2> d2p x ( 4  = (5.9) 

(5.10) 

This phase is equivalent to that due to an absorptive gaussian potential whose strength 
and range both are energy dependent. 

Thus the T matrix is given (see (4.23)) by 

Ti = 2is 1 [exp{-g(s) expi$]] - 11 exp(iA . x) d2x, 
R (4 

where 
p s z o - l  

g(s) = - --((In s)- ’, 
U( (4742 

(5.11) 

(5.12) 

R2(s) = x‘ In s. (5.13) 

For the case a, > l t  and in the limit of large s this may be approximated, as suggested 
by Froissart (1961), as 

Ti = - 2is JOa exp(iA . x) d2x: 

where 92, is the radius of the equivalent black disc, defined by 

(5.14) 

(5.15) 

(5.16) 

For large s we find 

where 

t = -(pi-pf)2. (5.18) 

For the cases a0 = 1 or < 1 see Chang and Fishbane (1970), Chang and Yan (1970) and Hasslacher er al 
(1970). 
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The total cross section 

- Im Tf i ( t  = 0) 
f7T = = IT@, 

S 
(5.19) 

= IT(.,, - l)cc’(ln s)’. (5.20) 

From (5.17) we see that the slope of the diffraction peak behaves like (a‘ In s)’. It is 
interesting to note that in this approximation the elastic amplitude and total cross 
section depend only on the effective radius 92. If instead of an energy-dependent range 
gaussian potential we used an exponential potential with constant range of the form 
found by Cheng and Wu (1970) 

T~ - $0 - 1 e - K ( x )  (5.21) 

the s dependence of (5.17) and (5.20) would have been the same (Zachariazen 1971). 

6. Discussion 

We have shown that the process of high energy elastic scattering due to the multiple 
exchange of particles of a given spin (or Regge poles) can be simply evaluated by modify- 
ing and extending a method introduced by Bjorken et al(1971) using light cone variables 
and applied by them to scatter in an external field. The main features of the approxima- 
tion were examined in 4 3. It is necessary to take a high energy limit in order that no 
particle-antiparticle pairs contribute and that the operators appearing in the T product 
can all be evaluated either at a fixed 7 or z .  As we saw by examining the structure of 
equation (3.12) this is true if no longitudinal momentum is emitted or absorbed by the 
exchanged particles. Specifically, in equation (3.12) it was necessary that the phase 
factor exp{i(pb - p o  - v)t} be independent of p o  and p b  which is true if p o  = p b .  This 
in turn implies in the high energy limit that p 3 ’  = p 3 .  It then follows from the momentum 
conservation that no longitudinal momentum is transferred to the exchanged particle. 

Applying the result to a simple absorptive Regge pole we reproduce earlier results 
(see Zachariazen 1971) on the high energy behaviour of elastic scattering and cross 
sections which reach the Froissart (1961) bound. 
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